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Abstract

This paper describes how the black box model, as introduced in earlier papers, helps to plan and
operate systems that grow gracefully. This comes about through a better understanding of system
utilization. Earlier papers showed that the black box model can provide automated utilization
measurements. This paper applies the same model more broadly to the planning and operation of
a system. Our goal is to grow the productivity of the system up to the level defined in the capacity
planning process, with minor delays due to queueing and/or contention.

1 Introduction

Previous papers have shown that by concealing the de-
tails of the server configuration, it is possible to develop
a simple “generic” model of system queueing, that fits
well with a variety of more detailed queueing models
[1]. Also, the resulting black box model provides a pow-
erful technique for measuring the utilization of a system
based upon its external behavior, even when traditional
utilization measurements based upon cycle counts are
not applicable [2].

Just as the black box model helps with the measure-
ment of utilization, it also sheds light on the implica-
tions of utilization to system performance and capacity
planning. The purpose of this paper is to explore more
fully this conceptual side of the black box model.

Ideally, we would like the increase in system use that
comes from growth to occur gracefully. When this hap-
pens, utilization is a half-full, rather than a half-empty
glass. The productivity of the system grows until its
use reaches the level initially defined during the capacity
planning process. Meanwhile, the system continues to
perform well, with relatively minor delays due to queue-
ing and/or contention.

Unfortunately, the glass can sometimes become half
empty. Systems can grow past their realistic limits. At
that point, the use of a system for its intended purpose
may become a struggle, due to severe delays.

This paper describes how the black box model provides
a quantitative mechanism to plan and operate systems so

that the glass remains half full. Section 2 puts in place a
simple, geometrically oriented definition of the desired
operating region, together with multiple criteria that can
be used to verify whether a given capacity plan, or a
given operational environment, falls within that region.
Sections 3 and 4 then follow up on the actual use of the
proposed criteria in, respectively, capacity planning as
well as day to day system management.

Although the black box model provides the underpin-
ning of the proposed scheme, its value comes from the
criteria provided in this paper for assessing utilization.
We find that it is surprisingly easy to to decide whether
the use of a system exceeds the level that can be ac-
complished gracefully. In the capacity planning process,
this assessment is based upon the estimated system re-
sources and processing requirements. For a running sys-
tem, the same assessment is based upon live measure-
ments.

2 Region of Graceful System Growth

The mathematics of the black box model are tied closely
to the system map, an idea first suggested by Allen [3].
Figure 1 presents an example of how the system map
works. The example shows the behavior of the M/M/2
model, although the exact model chosen does not matter
for the purposes of the present discussion.

Figure 1a presents the average response time R as a
function of the system utilization ρ . This is a typical
example of a so-called response time/throughput curve.
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a. Response time/throughput curve.
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b. System map.

Figure 1 The same M/M/2 queueing model, presented in two ways.

For very low system utilizations, little waiting occurs,
and the response time is dominated by the time spent
actually receiving service; that is,

R = Q+ s

where the average queue time Q is small compared with
the average service time s.

The drawback of Figure 1a comes at very high system
utilizations. In this region of the figure, the time spent
waiting for service becomes unbounded, so no matter
what range is chosen for the vertical axis, it is impossi-
ble to show the entire curve.

The corresponding system map, as shown in Figure 1b,
solves this problem by presenting the ratio of service
time to response time. For the sake of having a conve-
nient term, let us call this quantity the system map ratio:

M =
s
R
=

s
Q+ s

In the system map, this ratio gradually falls from unity
(no waiting) to zero (infinite waiting); in this way, the
entire curve can be shown, including the behavior as the
system utilization approaches 100 percent.
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Figure 3 Family of system maps produced by the black
box model.

As a thought exercise, imagine a blank system map.
Suppose we know that a particular system’s range of
performance includes some point on that map – for ex-
ample, any of the points marked “+” in Figure 3. How
much can we conclude from this minimal amount of in-
formation?

Remarkably, it seems to be possible to conclude a great
deal. A variety of different queueing models, if they are
forced to produce a curve on the system map that passes
through an identified point, tend to produce very similar
results. Thus, given a point on the system map, it is pos-
sible to estimate fairly well the remainder of the map,
without needing to know all the details of the queueing
mechanism.



The easiest way to produce the needed estimate is to
use a family of curves that is not a valid solution to any
well-known queueing model. This family, given by the
general formula

M = 1−ρc (1)

is, however, very simple mathematically. Figure 3
presents the inferred system map behavior, based upon
(1).

The black box model is an approximate mathematical
model that can be invoked to explain the success of (1).
For this paper, we do not actually require the full black
box model; instead, we begin with (1), and reason based
upon that starting point.

Assume, then, that the system map of a given system
is specified by (1) for some number of servers c ≥ 1.
The number of servers may require estimation, and is
not necessarily assumed to be an integer. We now assert
that the range of system operating conditions over which
growth can occur in a graceful manner corresponds with
the condition M ≥ ρ as shown on the system map. In ge-
ometric terms, the desired operating region is the portion
of the system map at or above a diagonal line extending
from the origin.

To see that this is the case, consider the specific utiliza-
tion defined by ρknee = (c+ 1)−1/c. This helpful point
of reference is always close to, but no greater than, the
utilization that occurs on the diagonal.

By (1), the corresponding system map ratio Mknee is
given by c/(c + 1) >= ρknee. Thus, the fraction of
time spent in the queue, waiting for service, is given
by 1−Mknee = 1/(c + 1). This quantity is equal to 1

2
when c = 1, and becomes less and less significant as c
increases.

Since Mknee >= ρknee we may draw a vertical line from
the point (ρknee,Mknee) downward, meeting the diago-
nal; then another line toward the right, meeting the curve
again at a point such that M = ρknee. Clearly, this point
is at or below the diagonal. In addition, the quantity
1−ρknee has the same desirable properties as those just
described at the end of the previous paragraph. This
quantity is also equal to 1

2 when c = 1, and becomes
less and less significant as c increases.

The value of M that occurs at the diagonal can be
bounded between the two calculations of M just given;

therefore, the fraction of time spent in the queue, for an
operating point along the diagonal of the system map,
has the same desirable properties as it does for the two
bounding cases. It is equal to 1

2 when c = 1, and be-
comes less and less significant as c increases.

On the other hand, by the time the curve of performance
as shown on the system map crosses the diagonal, it has
already turned downward. Any further gains in utiliza-
tion must come at the expense of significant additions
to queue time. This situation calls to mind the old say-
ing “quit while you are ahead”, and explains the recom-
mended geometry for defining when the utilization glass
can be considered half full.

The core idea of this paper is that a surprising variety
of mathematical criteria can be used to identify the de-
sired operating region. They are equivalent to each other
in the sense that they produce the same pass/fail grade
when applied to a given set of operational conditions.
However, each criterion uses different information, re-
ducing the amount that must be known about the envi-
ronment.

Let x represent the average rate of system requests per
second, and N the average population of outstanding
system requests. Note also that by Little’s law, these
quantities are related by N = xR. Then within the frame-
work of the black box model, all five of the following
criteria are equivalent:

M ≥ ρ (2)

ρ ≤ ·· · (1− (1− (1− c
c+1

)
1
c )

1
c )

1
c · · · (3)

N ≤ c (4)

1−
(xs

c

)c
≥ xs

c
(5)

[
1− s

R

] 1
N ≤ s

R
(6)

Also, the utilization threshold values that (3) states in
the form of a limit agree well with those of the closed
expression

ρ ≤ 1
4

c
c+1

+
ρknee

2
+

1
4
(1−ρknee)

1/c (7)

To three digit precision, the two forms (3) and (7) of the
utilization threshold are interchangable.



As an example of how to reason about the black box
model based upon a variety of criteria, consider again
the point of reference that occurs when the utilization is
given by ρknee = (c+ 1)−1/c. As we observed in a pre-
vious paragraph, this point reflects conditions where the
criterion (2) holds; but we might ask, how close is that
criterion to failing?

The simplest way to answer becomes apparent by exam-
ining instead criterion (4). The value of N at the point
of reference is given by Nknee = (c+ 1)(c−1)/c. When
c is an integer, that same value can be stated approxi-
mately as Nknee ≈ c−Hc+2 +H3, where Hi represents
the ith harmonic number. Keeping in mind that c ≥ 1,
we thus see that the value of Nknee is equal to that of c
when c = 1, and falls below that of c for c > 1.

Turning now to the offset δ between Nknee and c, we
have the relationship δ ≈ Hc+2 − H3 << c. For this
reason, the value of Nknee always comprises by far the
largest portion of c. It is fair to say that the point of ref-
erence corresponds to a case where the criterion (4) just
barely passes. By extension, the same statement applies
to the other four criteria as well.

The remaining sections of the paper exploit (5) and (6)
by applying them respectively to the capacity planning
and the system monitoring phases of the system man-
agement life cycle.

3 Capacity Planning

The capacity plan for a complex system proceeds by ex-
amining that system’s most important resources. The
black box model is intended to help with the analysis of
resources that are used temporarily to process a particu-
lar request, such as processor cores or system ports. The
requirement for a resource of this type is driven by the
rate x of requests against it, as well as the average ser-
vice time s that will be required to complete any single
request, when running by itself.

Given an estimate of both of the quantities just identi-
fied, it is then necessary to assess how many individual
units of the given resource should be configured. Ordi-
narily, system performance will suffer unless more units
of the resource are provided than the average number re-
quired by the rate of requests. The criterion (5) provides

a simple and effective way to address the question of
how many additional units must be added to the capacity
plan, beyond those called for directly by the estimated
demand.

For example, consider the number of 8 Gbps fibre chan-
nel ports being provided with a Linux server. Based
upon past levels of load, we estimate that the server’s I/O
rate when running its maximum intended level of appli-
cation work is 50,000 I/Os per second, with an average
transfer size of 16 KB. Assuming the nominal 8 Gbps
fibre channel protocol, this implies that the number of
ports in active use will be (16/1024)× 50,000/800 =
0.976 on average. It is easy to guess that we ought to
configure at least 2 ports, based upon this average level
of port demand. But are two ports sufficient?

A simple way to address this question is to apply the
criterion (5). By that criterion, 2 ports are sufficient,
since 1− (0.976/2)2 = 0.762 > 0.976/2 (the criterion
passes).

On the other hand, in the analysis just presented, we
assumed that the port can run at the full 8 Gbps per-
mitted by the fiber channel protocol. Suppose, more
conservatively, we wish to assume that the actual effec-
tive speed of the port is 75 percent of this theoretical
maximum. This then implies that we need 1.30 ports
on average. Applying the criterion (5), we now obtain
1− (1.30/2)2 = 0.577 < 1.30/2 (the criterion fails).

We therefore arrive at the conclusion that two ports may
be sufficient, but only if the performance of the port
technology runs at close to the theoretical maximum. A
sensible next step may therefore be to investigate fur-
ther any performance data that is available for the af-
fected type of port hardware. Alternately, we could
choose to configure 4 ports. By (5) this will be suffi-
cient even if the port is only 75 percent efficient, since
1− (1.30/4)4 = 0.989 > 1.30/4 (the criterion passes).

4 System Monitoring

For many systems today, it is possible to directly mea-
sure the throughput x and response time R during any de-
fined measurement interval throughout the day. In addi-
tion, the quantity N = xR can be obtained using Little’s
Law. To apply criterion (6), however, we also require
data for the average service time s.



One method to measure s is to instrument the system
with the General Purpose Utilization Monitor, which
performs measurements of s in each measurement pe-
riod in addition to producing estimates of system utiliza-
tion [2]. In this paper, however, we do not assume that
instrumentation of that type is available. A reasonable
alternative is to estimate s by considering a shoulder pe-
riod in which the mix of applications is similar to that
running during the daily peak. In a well chosen shoul-
der interval, queueing may be light enough so that the
measurement of R can also be taken as the approximate
value of s.

Assuming that a reasonable value for s can be identified,
it is then possible to apply criterion (6) to assess based
on measured data whether the utilization glass is half
full.

It is important to note that the application of (6) does not
require a value for c. Instead, this criterion provides an
independent check on actual delivered concurrency of
the system. If for any reason the value of N exceeds the
effective system concurrency during some periods, then
we should expect that the criterion (6) will fail in those
periods.

For example, consider the same Linux system as before,
configured with two ports. Using data from a shoul-
der period as well as a peak period, where the average
transfer size was 16K in both cases, we conclude that
the minimum time required to complete such a trans-
fer is 26 microseconds, but under peak conditions the
average response time is 35 microseconds. Also, the
peak throughput is 40,000 I/Os per second, hence N =
40,000 × 0.000035 = 1.4. Based on that information,
the criterion (6) gives [1−26/35]1/1.4 = 0.379 < 26/35
(the criterion passes).

Although the system has been configured with two
ports, this does not necessarily mean that it can al-
ways support two concurrent transfers without the use
of a queue. For example, if both ports are in the same
adapter, the processor provided in the adapter may not
be able to accept interrupts from both ports at the same
time. Also, under some conditions, the adapter may
break a single host transfer into more than one physi-
cal transfer. The reverse case can also sometimes occur,
in which multiple transfers are consolidated. The black
box model cannot help with capturing such effects in de-
tail, but it provides a way to gauge their impact. Effects

of this kind may influence the effective concurrency of
the system.

In the example just given, we applied (6) to a single
measurement period. If, however, we observe the sys-
tem through a large number of measurement periods,
and assuming that we are able to capture wide swings
in the load level, we can then assess the maximum value
of N that is still capable of passing the criterion (6). That
maximum value provides an independent check on the
actual concurrency delivered by the configured pair of
ports.

Suppose, then, that the two ports do deliver a concur-
rency of c = 2. Given that fact, we can then use the
black box model to estimate the average port utiliza-
tion. Graphically, the condition c = 2 allows us to draw
a curve on the system map that belongs to the fam-
ily given by (1). We then superimpose, on the same
map, a straight line that corresponds to the condition
M = s/R = sx/N = ρc/N. To estimate the utilization,
we find the utilization level at which the curve intersects
with the straight line.

Conditions at the point of intersection are described by
a polynomial equation of order c. Typically, the solu-
tion of an equation of that type is best described using
bounds or a numeric approximation. In the case of the
geometric problem just described in the previous para-
graph, it is possible to state the utilizaton value at the
point of intersection with more than enough numeric
precision for the purpose of system monitoring.

To accomplish this, define the quantities β =√
(c+1)/2 and u = max(N, Nknee). Then the utiliza-

tion at which the curve and the straight line meet each
other is given within one percentage point by

ρ0 =
N

u+δ (Nknee/u)β +(N/u)β 2 (8)

Also, if we now define the two related quantities Z =
�N/u� ∈ {0, 1} and η = (N/c)Z ∈ {1, N/c}, then the
same point of intersection can be obtained to three digit
precision using

ρ ≈ N
N + c(1−Ac−Z

)/(1−Ac1−Z
)

(9)

where

A =
ηcN −ρc1−Z

0 cN +ρcZ

0 N2/η2

c2 +N2 (10)



In these equations, the quantity A is a geometric con-
struct that represents the closest point on the straight line
to an identified point on the curve. By giving the value
of ρcZ

at that closest point, A provides a new estimate of
the needed position along the curve either horizontally
(for the upper portion of the system map) or vertically
(for the lower portion). Also, the desired utilization is
an attractive fixed point of the function

f (ρ) =
N

N + c(1−ρ)/(1−ρc)

For that reason, (9) provides an effective way to apply
the value of A.

Continuing the example of the two port system, we have
already concluded that c = 2; this, in turn, implies that
Nknee = (c+1)(c−1)/c =

√
3 = 1.732, so δ = c−Nknee =

0.268. Also, we have measured N = 1.4, less than Nknee,
so u= Nknee = 1.732. Finally, β 2 = 3

2 . Based upon these
quantities, a rough value for the port utilization is given
by ρ0 = 1.4/(1.732 + 0.268 × 1 + (1.4/1.732)3/2) =
0.513.

Although a solution within one percentage point would
appear to be good enough in the case of this example,
the option also exists to compute the same quantity more
precisely by plugging the estimate 0.513 into (9) and
(10). This procedure yields the slightly adjusted esti-
mate 0.515 for the utilization value.

Some room for graceful growth remains at the utiliza-
tion level ρ ≈ 0.515 just obtained. However, the oppor-
tunity for such growth extends only until we reach the
condition N = c = 2. We can obtain the corresponding
threshold for the utilization level either by plugging the
assumption N = 2 into (9), or by applying (7). Using ei-
ther approach, we find that growth should not continue
past the utilization level given by ρat c = 0.618.

5 Conclusions

This paper follows up on earlier papers about the black
box model, and uses that model to provide important
guidelines for system management. In particular, we
have examined the question of whether the utilization of
a given, specific system is excessive. Within the frame-
work of the black box model, this condition has a simple
geometric interpretation.

The most important conclusion of the paper is that the
black box model provides several distinct but equiva-
lent mathematical tests for excessive system utilization.
These tests can simplify both the capacity planning as
well as the performance measurement phases of the sys-
tem management life cycle.

The General Purpose Utilization Monitor, described in
an earlier paper, can assist in the management of system
utilization. It can take needed measurements, report sys-
tem utilization and dynamically maintain an estimate of
the concurrency of the system. This paper does not as-
sume that a monitor with these functions is in use, but
clarifies the underlying ideas behind the use of such a
monitor.
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