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Abstract

Large systems supporting mixed workloads incorporate workload management software allocating and controlling
usage of resources and focusing on meeting Service Level Goals (SLG) of each workload [8,9]. When the
response time of a workload exceeds SLG, we call it an anomaly. When the increase in response time by a
workload happens periodically at the same time, we call it a seasonal peak [3].

Systems administrators are creating Workload Management rules to prevent anomalies and allocate enough
resources during seasonal peaks to satisfy SLGs. When usage of resources increases, they allocate more
resources, but they are still concerned with the risk of performance surprises.

In this paper we will focus on Big Data environment and will discuss how to apply modeling to find appropriate
YARN Scheduler Queue settings to meet SLGs for Data Lakes, ad hoc and batch workloads and how to
determine when additional hardware resources will be required.

1. Introduction

Workload management software for complex systems, including Big Data Clusters, Teradata, Oracle and others,
use rules defined by Systems Administrators to control the allocation and usage of resources to meet SLGs of
each workload [9, 10]. Each workload can be characterized by frequently-changing performance, resource
utilization and data usage profiles. Response time is a critical part of SLG. Service time, Queueing time and Delay
time are components of the Response Time. In this paper, we will review a methodology of defining YARN
Scheduler Queues settings and justifying hardware configuration changes necessary to be sure that all
workloads’ response time will be below the SLG:
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Figure 1. Workload Response Time includes relatively stable Service time, but constantly changing Queueing
time and Delay time [9]. When response time exceeds the SLG, we call it an Anomaly.

1.1 Data Lake Resource Allocation & Management in YARN

YARN provides three standard schedulers to manage the tasks and control the execution and resource usage of
the various applications that run concurrently on the cluster: Capacity (the default), Fair, and FIFO [11]. When the
default scheduler is used, YARN rules are established by the Systems Administrator to assure the jobs are
executed in the most effective and efficient manner based on the tasks and the hardware resources at hand.

As depicted in Figure 2, in most scenarios, the resources are decomposed by departments (layer 1) while the
departments (parent) divide their allocated resources by actual projects (leaf). It should be pointed out that YARN



provides many configuration parameters and options for the Capacity and the Fair scheduler, and there is the
opportunity to design elasticity into the YARN rules. So, if resources are available (and not currently used by other
projects or departments) a project or a department that has a need for additional resources can allocate them.
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Figure 2: Cluster Capacity Scheduler Configuration

Below is an example of Configuration Parameters in YARN Capacity Scheduler leaf queues
(capacitySchedulerLeafQueuelnfo). To use common Workload Management terminology, we will refer to

Priority as YARN “absoluteCapacity” — share of the whole cluster resources, 0-100.
Resource Usage Limitation as YARN “absoluteMaxCapacity” — limit of the whole cluster resources usage, 0-100
Concurrency Limitation as YARN “maxApplications” — concurrency limit per queue.

An example of YARN Capacity Scheduler Queues Settings is shown on Figure 3.

Increase of Priority, Concurrency Limitation or Resource Usage Limitation for some of the workloads can
improve their performance but negatively affect queuing and delay components of the response time of others.

When Systems Administrator decides that there are not enough resources and YARN Scheduler cannot support
SLGs for some of the workloads, he or she increases the number of nodes and releases them later when
resource utilization is reducing.

2. Workload Characterization in Big Data Environment

Aggregation of performance measurement data into workloads processed in YARN Scheduler Queues, auto-
discovery of cluster hardware and software configuration is done every hour. Each workload has performance,
resource utilization and data usage profiles.
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Figure 4. Each workload can be characterized by performance, demand for resources, and data usage profiles.
Each workload has SLG and its tasks are processed in different YARN Scheduler queues

Analysis of workloads’ profiles and SLGs is used to set up YARN Scheduler Queues
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Figure 3. Example of YARN Capacity Scheduler Queues Rules
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Figure 5. In this example Hive tasks (green and yellow) running in those Queues that have higher Priorities have
better Response Time than tasks (red and brown) running in Queues that have lower Priorities
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Figure 6. User with name “Light blue” consumed most of CPU Time allocated to a Queue
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Figure 7. “Black” Program consumed most of the CPU Time allocated to a queue

Measurement data are used for determining seasonal peaks, anomalies and their root causes. They also are the
input to models and prescriptive analytics to compare different options and generate recommendations how to
change workload management rules and, if necessary, the hardware configuration to be able to liquidate
anomalies and continuously meet SLGs for each workload.

3. Anomalies and Root Cause Determination

The hour when the average response time for a workload becomes greater than SLG for this workload is a start of
Anomaly. The hour when workload’s response time becomes lower than the SLG is the end of Anomaly. The
difference between start time and end time of anomaly provides the duration of the anomaly.
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Figure 8. The Anomaly can be characterized by start and end, Anomaly Amplitude A, Duration of Anomaly D and
Severity of Anomaly S = A * D.

Anomalies can be determined not only for Response Time, but also for Throughput, CPU dtilization, 1/O rate,
Memory and Network Utilization.

workload parameter [root_causes [root_causes [root_causes root_causes |current workload
name timestamp |name program workload parameter user datetime value

HelpDesk3 95|RESPTIME [ID24 HelpDesk3 MEANCPUTIME A59826D 1/6/2016 19:00 27662
HelpDesk3 196|RESPTIME |QR1 HelpDesk3 MEANIOOPS A1D6886 1/11/2016 0:00| 18926.67
HelpDesk3 242|RESPTIME |QR1 HelpDesk3  |TOTALEXECCOUNT [86E3A08 1/12/2016 22:00| 35385.38
HelpDesk3 345|RESPTIME |QR1 HelpDesk3  |TOTALEXECCOUNT [595D7A0 1/17/2016 5:00| 29783.08
HelpDesk3 390|RESPTIME [JD24 HelpDesk3  |TOTALEXECCOUNT [E6A2208 1/19/2016 2:00 20710
HelpDesk3 400|RESPTIME [QR1 HelpDesk3  |TOTALEXECCOUNT [95A57D0 1/19/2016 12:00| 25925.16
HelpDesk3 433|RESPTIME [ID24 HelpDesk3 ~ |TOTALEXECCOUNT [59A4E01 1/20/2016 21:00| 19005.13
Dev2 241|RESPTIME [TAB Dev2 TOTALEXECCOUNT |LMERWIE 1/12/2016 1:00| 49925.92
Dev2 251|RESPTIME [REFRESH3 Dev2 TOTALEXECCOUNT |LEEMIWR 1/12/2016 11:00| 20792.93
Dev2 253|RESPTIME [SQLX1 Dev2 TOTALEXECCOUNT |ELWIRME 1/12/2016 13:00| 29840.42
Dev2 255|RESPTIME |REFRESH3 Dev2 TOTALEXECCOUNT |IMLEEWR 1/12/2016 15:00| 61304.62
Dev2 262|RESPTIME |REFRESH3 Dev2 TOTALEXECCOUNT |A09226C 1/12/2016 22:00| 48259.96
Dev2 265|RESPTIME |TAB Dev2 TOTALEXECCOUNT |IMWLERE 1/13/2016 1:00| 18049.09
Dev2 271|RESPTIME [SQLX6 Dev2 TOTALEXECCOUNT |KALCBDA 1/13/2016 7:00| 53420.59
Dev2 272|RESPTIME [TAB Dev2 TOTALEXECCOUNT |MRILEEW 1/13/2016 8:00| 69742.47

Table 1. Example of the determining Anomalies with the Response Time and their Root Causes. Workload
HelpDesk3 Anomalies’ Root Causes were high CPU time by user A59826D running program JD24 and high 1/0
rate caused by user AD6886 running program QR1

During certain periods, like the end of the month, the processing for some of the workloads takes more time. It is
an expected anomaly. Let’s call such repeatable anomalies as “seasonal peaks.” Other anomalies happened at
random time and they are unpredictable.

We have developed an algorithm to find the seasonal peaks. For expected seasonal peaks, we can proactively
change the YARN Scheduler Queues settings.

An example of finding the seasonal peaks based on analysis of the historical data it shown in Table 2.



WORKLOAD |PARAMETER MEAN MEAN

NAME NAME PERIOD |DURATION |AMPLITUDE
Accntl RESPTIME 1 3 72493.71
Accnt2 RESPTIME 1 2 0
Admin2 RESPTIME 1 3 41674.11
Devl RESPTIME 1 5 8712.97
HR4 RESPTIME 1 1 37763.97
Load0 RESPTIME 1 2 4137.35
Loadl RESPTIME 1 1| 202333.27
Load3 RESPTIME 1 1| 210877.68
Load4 RESPTIME 1 1| 177527.29
Load?7 RESPTIME 1 1| 393990.27
Load8 RESPTIME 1 1 22012.14
Other RESPTIME 1 3 8821.97
Prodl RESPTIME 1 1 84995.01
QAO RESPTIME 1 1 83520.66
QA2 RESPTIME 1 2 67362.99
TechSupport2 |RESPTIME 1 1 42580.35

Table 2. Example of determined Daily Seasonal Peaks

4. Methodology of Adaptive Control

Adaptive control of distributed computing environment is a challenging multidimensional problem that at this point
may not be ready to be easily solved by pure analytical approach, nor by traditional methods of optimal control.
One of the reasons is high dimension of state space of workloads and their performance characteristics and
highly cardinal nature of possible controls [7].

The proposed adaptive control method is a combination of analytical modeling of processes in multi-node cluster
and machine learning applied to history of measurements data of cluster performance, including response time for
vector of workloads and root causes of occurred anomalies [4.5].

Machine learning algorithms are applied to analyze patterns of anomalies and root causes to understand their
major types and frequencies [1,2].

Analytical model uses history of anomalies and root causes and applies to them multiple combinations of control
factors to collect enough evidence for selecting a better combination of rules for each anomaly scenario. The
analytical model step of the approach may require additional data analysis and machine learning techniques, like
reduction of dimensionality of anomalies and experimental design reducing the number of combinations of control
factors.

When Workload Management changes alone cannot satisfy SLGs, modeling determines the hardware upgrade
required to meet SLGs.
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Figure 9. When workload management changes can't satisfy SLGs, the queuing network model Queueing
Network Models (QNM) is used to determine the appropriate hardware upgrade required to Meet SLGs



4.1 Application of QNM for Dynamic Performance Management and Capacity Planning
Smart Search algorithm and QNM are implemented to evaluate options of YARN Scheduler Queues settings to
meet SLG for every workload.

The idea of the algorithm is following:

1. Find a workload with the biggest positive difference between predicted response time and SLG.

2. Find the most probable cause of SLG violation based on the longest response time component (CPU
service or queuing time, 10 service or queuing time, network service or queuing time, etc.) for this
workload predicted by QNM.

If it is service time, then application tuning or hardware upgrade is required
4. |If itis a queeing time issue, then one of these options is used:

a. Increasing the priority of the problematic workload waiting for resource or reduce concurrency for
other workloads using excessive amount of resources. It usually improves performance of this
one workload but worsens performance of all other workloads.

b. Find another workload that utilizes most of the critical resource. Reduce either its Priority or
Concurrency limit or Resource utilization limit. Reducing any of these worsens the performance
of the selected workload but improves the performance of all other workloads.

c. If all reasonable changes of the YARN parameters did not help satisfy all workloads’ SLG,
additional resources are required

5. Estimate the performance of all workloads for the new YARN parameters and different hardware
configurations using the QNM.
6. If all workloads’ SLG are satisfied, stop the analysis. If not return to #1.

w

1. Workload priority here means the relative share of available resources assigned to the workload.

2. It seems it\\is better to reduce the workload'’s priority rather than reducing resources or concurrency limit
because the latter is unconditional: the limited workload cannot use more, even if the resource is
available.

3. The numeric value of the proposed change is defined by the algorithm based on the difference between
the predicted workload’s response time and its SLG.

The algorithm determines required changes and provides expectations of the response time and usage of
resources for each workload It also enables verification of recommendations by comparing the actual
measurement data with expected. Here are two examples.

Example 1. Applying QNM to Predict Anomalies and Determine YARN Scheduler Queues parameters
changes necessary to meet SLGs for all workloads
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Figure 10. According to prediction results, Response time for three workloads (green, brown and blue) will not
meet SLGs. Can changes in YARN Scheduler Queues required be determined to meet SLGs for all workloads?
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Figure 11. Yellow workload “User” uses about 50% of CPU resources
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Figure 12. Reduce Priority for “Yellow” workload will meet SLG for “Blue” workload, but “Green” and “Brown”
workloads will not meet SLGs
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Figure 13. Reducing Priority for “Yellow” workload and increase for “Green” and “Brown” is sufficient to meet
SLG for all workloads



Example 2. When all workloads violate SLGs, additional resources are required. This example illustrates
use of QNM and Capacity Planning Recommender to justify minimum upgrade required to meet SLGs for

all workloads
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Figure 14. According to prediction results all workloads will violate SLGs in 2 months and workload management
alone will not be able to solve the problem. Additional nodes will be required.
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Figure 15. According to Capacity Planning Recommender increase from 1456 to 1642 CPUs and increase from
3432 to 3436 disks in a Cluster are required to meet SLGs for all workloads during next 12 months

4.2 Application of ML algorithms for Dynamic Performance Management

After determining Anomalies, Root Causes and Seasonality (Tables 1 and 2), the ML algorithms for Clustering of
Anomalies, Mapping Anomalies to Control Parameter Changes [6] is applied to identify Control Parameters
Changes which helped in the past to satisfy SLGs.



Mapping Anomalies to Control Parameter Changes

Identified anomalies are traced back to the control parameter changed at that time .
> head(di Iiv_priority_matrix),3)
3rdPTYLd ACTUA Actuarial APPL APPLDEV CAPNL CHS c1rld CIILd CIIOUT-BATCH CIIOUT-WEBAPP (1s CIsLd
0 0 0.0 7058 0.006453476 0 -0.008250853 -0.01482353  0.00000000 0.004941176 0.009882353 -0.005090909
0 0 -0.007 705 0.001555431 0 0.008250853 0.00000000 0.01482353  0.000000000 0.000000000 0.009882353
0 0 0.0008529412 -0.012950084 0 -0.014823529 0.01235294 -0.01482353 0.000000000 0.008641711 -0.009882353
CLINICAL CLd COALd CoCv20Ld CompH1thsn DATAEXCHG DBA DBC DEVLPR DMS pntlvnLd EAS
-0.0007058824 0.004941176 -0.004941176 0 0 0 0.01976471 0.009345882 -0.009882353 0.000000000 -0.006636105 0
-0.0041978609 0.002470588 -0.004941176 0 0 0 0.00000000 -0.003778547 0.009882353 0.004941176 0.001694929 0
0.0086042780 0.007411765 0.003705882 ] 0 0 0.00000000 -0.002397924 0.000000000 -0.004941176 -0.014823529 0
ECRLd EDLRILd  EDLRILOAD EDML  EDWARDLOAD  EDWHstLd EDWOthLd EFS500  EFS500Ld EGDLd  HELPDESK HR
0 0.007411765 -0.0050160425 0 0.009882353 -0.007071444 0 -0.003364706 0.000000000 0.019764706 0.009882353 0
0 0.012256684 -0.0007058827 0 -0.009882353 0.003487889 0 0.000000000 0.000000000 -0.014823529 -0.001411765 0
0 -0.009786096 0.0089306724 0 0.009882353 0.002441523 0 0.000000000 -0.009882353 -0.004941177 -0.003245172 0
HRALd Load LOAD MbrshpLd MCP MCPLd  Medicaid,d  oplSoln 0PS Other Activity OUT ouTOther
0.004707594 0.002546154 0.000000000 0.009882353 -0.014823529 0 0.00741 y : . 012914 0.024 0.009882353 0
-0.008103530 0.000000000 0.000000000 -0.009882353 0.019764706 y 75 -0.0129148 -0.0129148 0.000 0.000000000 ]
0.009882353 0.000000000 0.009882353 0.000000000 -0.003051903 722  0.0000000 0.0000000 0.000 0.000000000 0
PEM Pharm pharmLd PRC PRODLd  ProviderLd PROVL ROSLd RHILd RIA RVNULd
0.00000000 0.00000000 -0.009882353 0.009882353 0.00000000 -0.001230190 0.000000000 0.000000000 -0.009882353 0.009882353 0.0009331650
3 0.00000000 0.00000000 0.009882353 -0.002964706 0.00000000 0.000326904 0.000000000 0.009882353 0.000000000 0.000000000 -0.0001249998
4 0.01510777 0.01510777 -0.009882353 0.002964706 -0.01482353 0.002765102 -0.007411765 -0.007411765 0.009882353 -0.004941176 -0.0049411765
STARLA SVC  SYS_STATS unknown USER
0.005558823 0 0.004941176 0.001970588 -0.004941177
-0.009882353 0 -0.004941176 0.002545454 0.004941177
X4 -0.004941176 0 0.004941176 0.002395722 0.035786096

Figure 16. Control Parameter Priority Change Matrix

The matrix above is a snapshot of the complete matrix that captures only data for four hours. Here the columns
represent the workloads and the rows represent the differencing of adjacent time periods. For example, Row X2 is
the changes done between HR1 and HR2, Row X3 represents the change done between HR2 and HR3 for
individual workloads.

Similarly, the change matrix for CPU Utilization Limitation and Concurrency settings for all workloads are built.

Identification Significant Control Parameter for each Workload

In this step, the control parameters which have the strongest impact on the Workload’s Performance, whether it is
concurrency limitation, priority or CPU utilization limitation are determined. The objective here is to identify both
negative and positive correlations. For example, reducing the CPU Utilization Limitation for one of the workloads
is likely to degrade the system’s overall response time for other workloads.

Results of applying ML algorithms to justify YARN Scheduler Queues settings will be a part of the presentation.

4.3 Application of ANN for Data Lake Capacity Planning

In most Data Lake setups, the YARN rules are not dynamically changed, so they depict a rather static entity that
may need to be fine-tuned periodically. Further, the statement can be made that most Big Data clusters are vastly
over-configured and hence an actual resource shortage is rather unusual.

In scenarios where the cluster resources are being highly utilized and there is a potential for over-committing the
resources, one of the authors of this report has been working on incorporating dynamic capacity planning based
on artificial neural networks into the cluster maintenance cycle [12].

It must be pointed out, however, that the objective is not to adjust the YARN rules per se, but to determine how
many additional nodes should be moved into the cluster to stay within the SLGs (taking advantage of the great
horizontal scalability of the Apache Big Data projects).

This process works both ways, so if a downward resource demand is projected, the node count in the cluster can
be reduced. In practice, this approach has proven to be more effective than dynamically changing the YARN
rules. To reiterate though, any cluster or YARN rule changes are only necessary if the cluster resources are being
fully utilized, a scenario that is rather unusual when Big Data clusters are vastly over-configured.



5. Summary

This paper includes a methodology and several examples illustrating application of modeling for Dynamic
Performance Management of Big Data Clusters and challenges of data collection, workload characterization,
anomaly detection, root cause determination, identification of seasonal peaks and justification of changes in
YARN Scheduler Queues Control Parameter necessary to continuously satisfy SLGs for all workloads.

Related Work

Many papers discussing Autonomic Computing and application of the Control Theory were presented at IEEE
conferences ICCAC. Some of them focus on challenges of the workload and resource management in Big Data
environment. Most of them focus on batch Map Reduce and Tez batch workloads. Just a few papers cover
issues of autonomic computing in real time environment based on Spark, Storm and Kafka.

Future Work

We are working on applying Prescriptive Analytics based on Machine Learning and Al to justify Performance
Engineering, Performance Management and Capacity Planning decisions during Big Data applications life cycle.
We will continue collaboration with several Universities, IBM and research organizations to develop
Recommenders for Performance Assurance
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