
1Best Practices for Root Cause Analysis

Best practices
for root cause
analysis

2Best Practices for Root Cause Analysis

Executive Summary

Systems fail. These
failures and outages kick
off an all-too-common
chain of events: upset
customers, missed SLOs,
lost revenue, and stressed
out developers.
What sets companies apart is how they learn from
outages, to more effectively and efficiently find the
root cause of problems.

Root cause analysis is about understanding not just what happened
but why it happened. It’s about how our assumptions about a system
or services are different from reality, so that fixes address the
underlying cause instead of simply rolling back the latest deployment.
Effective root cause analysis helps keep customers happy, prevent
lost revenue, enable continuous development velocity, improve
organizational efficiency and over time, might build a more resilient
tech stack.

3Best Practices for Root Cause Analysis

Best practices for
root cause analysis

Once you’re at the point of investigating the root
cause of a problem, it’s likely because someone
was complaining or something internally set off
an alert. You might have had customers who are
having a poor experience with an application,
either because it’s slow, some features weren’t
working or they can’t access it at all. During
that outage, the team’s focus is on getting the
application back up. That might mean first rolling
back to a previous version or finding another
work-around. That’s great: you should absolutely
be working to first mitigate the problem.

Once the problem has been mitigated, however, it’s time to really
get to work: again, root cause investigations aren’t about fixing
outages. They’re about understanding why the outage happened in
the first place so that teams can prevent this from occurring in
the future.

4Best Practices for Root Cause Analysis

The right mindset
It’s important to start root cause analysis with the
right mindset. This means:

1.	 Free from assumptions. Everyone involved should stay open-
minded to what the root cause might be, and use evidence to
prove or disprove hypotheses.

2.	 Start with as large a net as possible. You’ll want to examine or
have a tool that examines as many possible factors as possible.
This means looking at different types of changes as well as a
wide time frame — sometimes the root cause of a problem was a
change that happened significantly before the incident occurred.

3.	 Drill down systematically. Your analysis should drill down with
increasing granularity as you uncover more evidence. The more
granular the data, the more likely you’ll be able to identify and
remedy the root cause. Likewise, you’ll want to be wary of overly
sampled datasets and performance monitoring and observability
tools that do not capture 100% of your event data.

The right mindset

Be free from
assumptions

Start with
a large net

Drill down
systematically

1. 2. 3.

https://lightstep.com/blog/the-truth-about-sampling-and-distributed-tracing/
https://lightstep.com/blog/the-truth-about-sampling-and-distributed-tracing/

5Best Practices for Root Cause Analysis

Avoiding tribal knowledge
Probably the most common mistake when it comes
to root cause analysis is overreliance on tribal
knowledge. This often happens when organizations
don’t have robust observability tools in place
that would allow them to take a more methodical
approach to investigations, starting from the
big picture, looking for clues and zeroing in with
increasing granularity. Here’s why tribal knowledge
is such a big problem.

It can’t scale.
Relying on individuals to ‘know’ what happened might work if there’s
one engineer and one or two services. But as complexity increases,
it becomes simply impossible for any person to keep an accurate
mental picture of how the system behaves in the wild.

It’s inaccurate.
Relying on what a single engineer or team ‘thinks’ they know
about the application can cause teams to ignore any evidence
that contradicts the theory. This is especially a problem in edge
use cases: If the root cause of a problem is X nine times out of
ten, engineers will always assume that X is the problem. In some
cases, this mindset will make it either impossible or exceptionally
time consuming to find the real root cause. When relying on tribal
knowledge to find a root cause, teams are prevented from keeping

6Best Practices for Root Cause Analysis

an open mind about the wide variety of root causes that could be
the underlying root cause — from server issues to an edge-case
dependency to a change in usage patterns.

It creates business risk.
Relying on tribal knowledge holds organizations hostage to their most
senior engineers — the ‘holders’ of the tribal knowledge. If those
engineers get a better job offer, retire or burn out, organizations can
instantly lose all of their tribal knowledge, and find themselves unable
to find root causes.

It creates burn-out.
The engineers who hold the most tribal knowledge are also the
organization’s most senior, most experienced engineers. If they
are constantly being pulled into investigations, they are distracted
from working on other projects. Their own development velocity
decreases — they spend less time and energy finding novel ways
to use software to create value for the organization. It can also be
frustrating for those engineers, who would rather be creating value
for the company.

But how do organizations get away from tribal knowledge in root
cause analysis? By using the right tools to understand context,
focusing on actionable information, and preparing proactively.

7Best Practices for Root Cause Analysis

Best practices for effective
root cause analysis
Once you are ready to get started, you can follow
some of these best practices for efficiently root
causing a problem:

•	 Understand the context
•	 Focus on what you can actually control
•	 Continuously improve processes

8Best Practices for Root Cause Analysis

Understand the context
When looking for the root cause of a problem, it’s important to
understand not just how individual components of a system work
but also how they interact with each other; this means understanding
how your service interacts with other services. This allows teams to
start with a big picture and follow connections progressively as they
look for indications of where a root cause is coming from. Contextual
information is critical in identifying how services behave and provide
everyone with a better mental map of how they communicate and
depend on one another.

Context is critical. Root cause analysis tools need to not only capture and
present data, but surface meaningful insights and correlations that help
developers understand exactly why a change in performance occurred.

9Best Practices for Root Cause Analysis

Look for connections between seemingly
unrelated events.
The dependencies in modern applications are complicated, and
engineers often don’t understand them all. This is especially true in
large organizations where teams are responsible for one service and
have little overlap with the teams responsible for other services. This
process can involve:

•	 Looking for alerts and/or errors that happened in succession

•	 Looking for outside factors, like changes in customer usage or
announcements from your cloud provider

•	 Using tools to get an accurate dependencies map

Finding connections and putting the problem into the correct context
is key to building a more accurate mental map of how the application
behaves in the real world.

Narrow the search space.
Effective root cause analysis isn’t about looking at every data point. In
fact, it’s quite the opposite. You’ll want to use tools that automatically
surface the likely root cause(s) and identify non-performant signals
that relate to or correlate with a specific incident.

Manually combing through logs or other large data sets simply takes
too long, especially when the root cause is often the result of a
specific deploy, customer action, or dependency that you may or may
not even be aware of.

10Best Practices for Root Cause Analysis

Track changes back in time.
Once you’ve identified something that is clearly correlated with the
issue, it’s important to track it back in time and see if you can find
the first time the error occurred — even if the first occurance wasn’t
noticed by anyone. While you narrow down the time window in
which to look for changes, you should also keep an open mind about
what the root cause could be. For example, it could turn out that a
library was updated right before the error started showing up. Or, it’s
possible that a customer altered its usage behavior.

11Best Practices for Root Cause Analysis

Focus on what you
can actually control:
actionable causes
In a certain number of cases, the root cause of
an outage is something completely out of the
organization’s control — or at least it seems
that way. During the investigation however, it is
almost always possible to make even seemingly
‘unactionable’ root causes fixable. For example:

•	 The outage was caused by a cloud provider error. This wasn’t
technically the team’s fault, but there are ways to architect the
application so that it’s able to automatically fail over to other
availability zones and/or another cloud provider if one goes down.

•	 The root cause was a change in customer behavior. It would be
a good idea to reach out to the customer to make sure the change
in usage patterns is intentional, consider updating your terms of
service and/or finding a different way to manage scaling so that
similar changes in usage don’t cause an outage.

In the scenarios above, organizations may or may not decide to
make the fix. It might not make business sense to re-architect
the application to avoid two minutes of downtime per month
— all depending on how critical the application is and what the
consequences of downtime are. Not all root causes are easily
reversible, especially if they happened too far in the past. In those

12Best Practices for Root Cause Analysis

cases, organizations have to see what can be done to mitigate the
potential for the same root cause to cause problems again.
It’s also important to remember that the ‘root cause’ of a problem
was not necessarily a ‘mistake.’ The reason root cause analysis is so
important is because engineering teams don’t always understand
how the application actually functions in a real-life, production
environment, with real users and under various edge cases. Even if
the root cause was a mistake, root cause analysis sessions should be
‘blameless.’ The goal of root cause analysis isn’t to point fingers at the
individual or team who caused the mess — it’s to clean up and make
sure it doesn’t happen again. If engineers are worried about being
blamed for an incident, they’re less likely to be as engaged in the root
cause analysis process and less likely to be completely honest.

Clear mistakes are generally easier to fix than root causes that
force teams to reconstruct their mental map of how the application
components work together.

Control the future with chaos gamedays
The best way to improve an organization’s root cause analysis
process (as well as the incident response) is to practice. Running
Chaos GameDays is a way to proactively understand how your
system will respond under a variety of circumstances and to keep
everyone’s mental map of the system architecture as up-to-date as
possible.

The goal of a GameDay is to answer questions like ‘what could go
wrong in X scenario?’ or ‘do we know what will happen if X service
goes down?’ The type of information teams need during and after a
GameDay are the same that they’ll need to do root cause analysis
after a failure.

13Best Practices for Root Cause Analysis

During the GameDay, teams should ask themselves
the following questions:

•	 Do we have enough information?

•	 Is the application behaving in the way we expected, given the type
of failure we’re testing?

•	 What would the end user experience if this failure were to happen
in production?

•	 How are upstream and downstream dependencies impacted?

•	 Are the upstream and downstream dependencies behaving in the
way we expected?

After the GameDay, it’s important to do a post-
mortem — including a GameDay root cause
analysis. Like a post-mortem following an incident,
this should be done within a couple of days after
the GameDay, and should include any steps you
might take after an incident, including:

•	 Making changes to your monitoring and observability tools

•	 Reporting a bug

•	 Updating the runbook

•	 Running a complete root cause analysis, especially if something
happened that the team didn’t understand.

14Best Practices for Root Cause Analysis

GameDays can also be a part of the root cause analysis process.
After changes have been made, they can help determine if the root
cause identified and fixed was in fact the root cause.

•	 If the GameDay uncovers additional unexplained behavior and/or
the attempted fix has no effect, it’s back to the drawing board

•	 If the GameDay verifies that the root cause was correctly identified
and has been corrected, it’s important to set up some kind of
automated testing to ensure that subsequent deployments don’t
re-introduce the failure.

Running regular GameDays gives teams both more practice with root
cause analysis as well as information about what tools and practices
they need to implement proactively so that post-incident root cause
analysis can be as successful and smooth as possible.

15Best Practices for Root Cause Analysis

The Results: What
Effective Root Cause
Analysis Does

Adjust the mental map
Every engineer in an organization makes a series of assumptions
about how the application works, what the network of dependencies
looks like, and what the most likely causes of an incident will be. This
understanding of how each component of the application will behave
under various circumstances is based on experience both with other
applications and in the engineer’s current role.

Even the most senior, experienced engineer will not have an entirely
accurate understanding of the application’s behavior under all
circumstances. Modern applications are complicated and dynamic,
so even if an engineer had a series of assumptions that were correct
at one point, they will be out-of-date within days, as services are
updated and new features are added.

Root cause analysis gives teams a way to update their assumptions
about how the application really works. The better the root cause
analysis process, the more accurate team members’ mental picture
of the application will be. This will ultimately make it not only make
it easier to fix future incidents, but will also make them less likely to
happen — because developers will better understand how services
are related and can avoid potential problems at the development
stage.

16Best Practices for Root Cause Analysis

Adjust your mental map. Understanding operation and service relationships is
fundamental to root cause analysis in distributed systems. RCA tools should
help provide a clear model of these dependencies.

Done right, root cause analysis will uncover the delta between what
you ‘think’ happened and what actually happened. By extension, it
uncovers the delta between what ‘is’ happening at any time — when
the application is running as planned, as well as when there is a
problem — and what team members ‘think’ is happening.

17Best Practices for Root Cause Analysis

Avoid burnout
Fixing the same problem repeatedly is demoralizing. Bugs are a fact
of life as a developer, but making the same mistakes is frustrating on
a number of levels.

Incidents are disruptive, especially for the developers involved in
incident response. Being woken up in the middle of the night is never
fun. When it’s because of something that has happened before and
could have been avoided with careful root cause analysis, the bug
can feel like a symptom of organizational dysfunction — the kind that
makes engineers want to look for another job or take a sabbatical.

18Best Practices for Root Cause Analysis

Conclusion
Root cause analysis should be done shortly after an incident, when
it’s fresh in everyone’s mind. Having the right metrics and data
visualizations are important, but so is human intelligence and getting
as many human perspectives as possible.

Root cause analysis depends on having access to enough information
about the system architecture, upstream and downstream
dependencies, and runtime behavior, but finding the root cause
requires human intelligence, organizational diligence, and the right
mindset.

A methodical, data-driven approach to root cause analysis will
improve the application’s resilience, as each incident makes the
application stronger and increases awareness about runtime
behavior. It doesn’t ensure an end to all incidents. Each incident
will likely be more difficult to fix, although the incidents themselves
should be increasingly rare.

The bottom line, however, is that every root cause analysis should be
a fresh mystery to solve, uncovering a new root cause for a new type
of issue every time.

19Best Practices for Root Cause Analysis

Sidebar: The ‘Tired Engineer’ Root Cause
The goal of root cause analysis is ultimately to get to the bottom of
an outage, slowdown or other problem from a technical perspective,
so you and the entire organization can better understand how the
application really works. Sometimes the technical cause could not
have been spotted ahead of time, because it wasn’t really a mistake
— it was code or a dependency that would have worked fine if
everyone’s assumptions about the application had been accurate.

Other times the root cause was clearly a mistake. When that
happens, it’s appropriate to ask how the mistake happened — to look
for organizational root causes. Some examples might be:

•	 There was pressure from the business to ship this application
before it had been properly tested

•	 The engineer was working her third 80-hour week and was tired

•	 The team was skipping code reviews and continuous integration
testing

Thinking about organizational root causes is a valid part of the root
cause analysis exercise, but should not obscure the true goal of root
cause analysis: To increase everyone’s understanding of how the
application works in real life and to ensure that errors are fixed in a
way that makes the application more resilient over time.

20Best Practices for Root Cause Analysis

About Lightstep
Lightstep enables teams to detect and resolve regressions quickly,
regardless of system scale or complexity. We integrate seamlessly
into daily workflows, whether you are proactively optimizing
performance or investigating a root cause so you can quickly get
back to building features.

Want to see Lightstep in action?
Want to see Lightstep in action? Try our interactive sandbox, and
resolve a performance regression in minutes.

©2020 Lightstep, Inc.

http://lightstep.com/play

